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ABSTRACT
We consider the model-free feature screening problem that aims to discard non-informative features
before downstream analysis. Most of the existing feature screening approaches have at least quadratic
computational cost with respect to the sample size n, thus, may suffer from a huge computational burden
when n is large. To alleviate the computational burden, we propose a scalable model-free sure indepen-
dence screening approach. This approach is based on the so-called sliced-Wasserstein dependency, a
novel metric that measures the dependence between two random variables. Specifically, we quantify the
dependence between two random variables by measuring the sliced-Wasserstein distance between their
joint distribution and the product of their marginal distributions. For a predictor matrix of size n × d, the
computational cost for the proposed algorithm is at the order of O(n log(n)d), even when the response
variable is multivariate. Theoretically, we show the proposed method enjoys both sure screening and
rank consistency properties under mild regularity conditions. Numerical studies on various synthetic and
real-world datasets demonstrate the superior performance of the proposed method in comparison with
mainstream competitors, requiring significantly less computational time. Supplementary materials for this
article are available online.
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1. Introduction

During recent decades, the rapid development of science
and technologies has enabled researchers to collect data with
ultrahigh-dimensional features. Such ultrahigh-dimensional
datasets are emerging in all fields of science and engineering,
from academia to industry (Tibshirani et al. 2003; Fan and Ren
2006; Weinberger et al. 2009; Pang et al. 2018; Li et al. 2022).
These datasets provide researchers with unprecedented oppor-
tunities for data-driven decision-making and knowledge discov-
eries. Nevertheless, traditional statistical and machine learning
algorithms may face big challenges when analyzing ultrahigh-
dimensional data. In particular, when the features contain
redundant and noisy information, estimating their functional
relationship with the response may become quite challenging
due to the computational burden, memory cost, statistical accu-
racy, and algorithmic stability (Fan et al. 2009; Hall and Miller
2009; Lv and Liu 2014).

To overcome such challenges caused by ultrahigh-
dimensionality, one commonly used technique is the sure
independence screening (SIS) (Fan and Lv 2008). The SIS
technique aims to screen out redundant features in linear
models by ranking their marginal Pearson correlations. It
is known that such a technique enjoys the so-called sure
screening property, which states the selected features contain
all the informative ones with probability approaching one. As
a result, SIS has become a popular feature screening technique
in ultrahigh-dimensional studies (Liu et al. 2015; Liu and Li
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2020). Recently, such a technique has been further extended
from simple linear regression to other problems, which include
generalized linear model (Fan and Song 2010), multi-index
semi-parametric model (Zhu et al. 2011), nonparametric model
(Fan et al. 2011; Liu et al. 2014), quantile regression (He et al.
2013; Wu and Yin 2015), compressed sensing (Xue and Zou
2011), among others. In addition, such a technique has been
extended to the model-free setting (Zhu et al. 2011; Li et al.
2012; Mai and Zou 2015; Liu et al. 2020). These methods are
known to enjoy the sure screening property without specifying
a regression model.

While the existing model-free feature screening methods
have already shown extraordinary performance, they may suffer
from huge computational costs in practice. Take the popular
distance correlation screening (DC-SIS) approach as an example
(Li et al. 2012), for a predictor matrix of the size n × d, the
computational cost of DC-SIS is at the order of O(n2d). Another
example is the recently proposed PC-SIS method, whose com-
putational cost is of the order O(n3d) (Liu et al. 2020; Xu et al.
2020). Such computational costs hinder the wide application of
model-free feature screening methods on large-scale datasets
such that both n and d are considerable.

To alleviate the computational burden, we develop a scalable
model-free feature screening method. This approach is based
on the so-called sliced-Wasserstein (SW) dependency, a novel
metric that measures the dependence between two random
variables. The idea of the SW dependency is motivated by the

© 2023 American Statistical Association and Institute of Mathematical Statistics
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notion of mutual information (Kullback 1997). Consider two
random variables X and Y with the marginal distributions μ

and ν, respectively. Let γ be the joint distribution of X and
Y and μ ⊗ ν be the product of their marginal distributions.
The mutual information quantifies the dependency between X
and Y by measuring the Kullback–Leibler divergence between
γ and μ ⊗ ν. In this paper, instead of using the Kullback–
Leibler divergence, we consider the SW dependency that mea-
sures the sliced-Wasserstein distance between γ and μ ⊗ ν.
The sliced-Wasserstein distance is known to have nice theo-
retical properties and is easy to calculate (Rabin et al. 2011;
Nadjahi 2021); details will be provided later. The prototypical
problem in optimal transport is to evaluate the Wasserstein
distances between distributions. Among different variants of
the Wasserstein distance, the sliced-Wasserstein distance has
attracted wide attention in the machine learning community
and has been successfully applied in many tasks, such as data
classification(Kolouri et al. 2016; Carriere et al. 2017), generative
models (Wu et al. 2019; Deshpande et al. 2019; Kolouri et al.
2018; Meng et al. 2019; Xu et al. 2020), and Bayesian infer-
ence (Nadjahi et al. 2020). Many variants of sliced-Wasserstein
distance have been proposed to improve efficiency, including
maximum SW distances (Deshpande et al. 2019), generalized
SW distances (Kolouri et al. 2019), orthogonal SW distances
(Rowland et al. 2019), distributional SW distances (Nguyen et al.
2020), and Hilbert curve projection distance (Li et al. 2022).

Using the SW dependency, we develop a model-free fea-
ture screening algorithm by ranking the SW dependency with
respect to (w.r.t.) the response and each feature, respectively.
The proposed algorithm has a computational cost of the order
O(n log(n)d), no matter whether the response variable is uni-
variate or not. Theoretically, we show the algorithm enjoys sure
screening and rank consistency properties under mild regularity
conditions. To evaluate the empirical performance and compu-
tational time of the proposed method, we compare it with several
mainstream competitors through extensive synthetic and real-
world datasets. The numerical experiments show the proposed
method yields comparable results, requiring significantly less
CPU time.

The remainder of this article is organized as follows. We
start in Section 2 by introducing the essential background of
optimal transport and transport dependency. In Section 3, we
present the details of the proposed sliced-Wasserstein depen-
dency. We then develop a feature screening approach using the
sliced-Wasserstein dependency. Details of the algorithm and
theoretical properties of this approach are provided in Section 4.
We examine the performance of the proposed method through
extensive simulation and two real data examples in Sections 5
and 6, respectively. Section 7 concludes the article, and the
technical proofs are provided in the supplementary materials.

2. Preliminaries

2.1. Optimal Transport and Wasserstein Distance

Let P(Rd) be the set of probability measures on Rd and
Pp(Rd) = {μ ∈ P(Rd) :

∫
Rd ‖x‖pdμ(x) < ∞} be the set

of probability measures on Rd with finite moment of order p.
Kantorovich (1942) considered a family of the joint distribution

of μ and ν, termed as the “coupling” π , such that two marginal
distributions of π are equal to μ and ν, respectively. Let � be the
set of all such couplings, that is,

�(μ, ν) = {π ∈ P(Rd × Rd) s.t. ∀ Borel set A, B ⊂ Rd,
π(A × Rd) = μ(A), π(Rd × B) = ν(B)}.

Among all the couplings π ∈ �(μ, ν), of interest is to find the
optimal one, defined by

π∗ := arg inf
π∈�(μ,ν)

∫
‖x − y‖pdπ(x, y),

where ‖ ·‖ is the Euclidean norm. Such a minimization problem
is called the optimal transport problem. Treating two distribu-
tions μ and ν as two masses, each coupling π could be seen as a
way of moving one distribution of mass to another. The optimal
transport is moving one distribution of mass to another as
efficiently as possible. It has been widely studied in mathematics,
probability, and economics; see Peyré and Cuturi (2019) and
Panaretos and Zemel (2019) for recent reviews. Closely related
to the optimal transport problem is the Wasserstein distance. In
particular, the p-Wasserstein distance of two probability mea-
sures μ, ν ∈ Pp(Rd) is defined as

Wp(μ, ν) :=
(

inf
π∈�(μ,ν)

∫
‖x − y‖pdπ(x, y)

)1/p
.

Wasserstein distance measures the “transport cost” between two
measures. As a result, it is also called the earth mover’s distance
in the literature (Levina and Bickel 2001; Peyré and Cuturi 2019).

One interesting fact about the Wasserstein distance is that it
admits a closed-form expression for one-dimensional measures.
Specifically, consider two one-dimensional measures μ, ν ∈
Pp(R), the p-Wasserstein distance (p ≥ 1) between them takes
the form

Wp(μ, ν) =
(∫ 1

0

∣∣F−1
μ (x) − F−1

ν (x)
∣∣p dx

)1/p
, (1)

where Fμ and Fν are the cdf w.r.t. μ and ν, respectively. This
closed-form expression indicates that one can calculate one-
dimensional Wasserstein distances through sorting, requiring a
O(n log(n)) computational cost.

2.2. Sliced-Wasserstein Distance

Using the closed-form expression in (1), researchers devel-
oped the sliced-Wasserstein distance for high-dimensional cases
(Rabin et al. 2011). Loosely speaking, the SW distance uses
the random projection technique to break down the high-
dimensional problem into a series of subproblems, each of which
involves the calculation of a one-dimensional Wasserstein dis-
tance.

More formally, let Sd−1 = {u ∈ Rd : ||u|| = 1} be the d-
dimensional unit sphere, and let 〈·, ·〉 be the Euclidean inner-
product. For any u ∈ Sd−1, let u∗ be the linear form w.r.t. u, such
that for a ∈ Rd, u∗(a) = 〈u, a〉. For any measurable function φ :
Rd → R and μ ∈ P

(
Rd) , φ#μ is the push-forward measure

of μ by φ : for any Borel set � in R, φ#μ(�) = μ
(
φ−1(�)

)
,
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with φ−1(�) = {
x ∈ Rd : φ(x) ∈ �

}
. For any μ, ν ∈ Pp(Rd),

the SW distance w.r.t. Lp norm is defined as

SWp(μ, ν) :=
(∫

Sd−1
Wp

p(u∗
#μ, u∗

#ν)dσ(u)

)1/p
, (2)

where σ represents the uniform distribution on Sd−1.
In practice, the integration in (2) can be approximated using

a Monte Carlo scheme, that is, one can randomly and uniformly
draw a finite set of projection directions from Sd−1, and replace
the integral with a finite-sample average (Rabin et al. 2011;
Bonneel et al. 2015). Algorithm 1 summarizes the empirical
algorithm to estimate the sliced-Wasserstein distance.

Algorithm 1 Empirical p-sliced-Wasserstein distance estima-
tion

Input: {xi}n
i=1 ∼ μ, {yi}n

i=1 ∼ ν, L, p ≥ 1
Initialize D ← 0
for l = 1 : L do

(i) Generate a random vector ul from Sd−1

(ii) Compute x̂i = 〈ul, xi〉 and ŷi = 〈ul, yi〉 for i = 1, . . . , n
(iii) Sort {x̂i}n

i=1 and {ŷi}n
i=1 in ascending order, denoted

by {x̂[i]}n
i=1 and {ŷ[i]}n

i=1, respectively
(iv) D ← D + ∑n

i=1(x̂[i] − ŷ[i])p/nL
end for
Output: D1/p

2.3. Transport Dependency

Consider the problem of how to measure the (nonlinear) depen-
dence between two random variables. Let X and Y be two
random variables with the marginal distributions μ and ν,
respectively. Let γ be the joint distribution of X and Y and μ⊗ν

be the product of their marginal distributions. Intuitively, one
has γ = μ ⊗ ν if and only if X and Y are independent. On
the other hand, one would expect γ to be significantly different
from μ⊗ν if X and Y are strongly dependent. Following this line
of thinking, a natural way to quantify the dependence between
X and Y is to measure some kind of “distance” between γ and
μ ⊗ ν. One famous measurement of this kind is the mutual
information, defined as DKL(γ |μ ⊗ ν), where DKL(·|·) denotes
that Kullback-Leibler divergence, that is, KL-divergence. Such
a measurement has found broad application in independent
component analysis (Stone 2004), feature selection (Peng et al.

2005), generative adversarial network (Belghazi et al. 2018), and
representation learning (Bachman et al. 2019).

Recently, some literature suggested replacing the KL-
divergence with the Wasserstein distance (Arjovsky et al. 2017;
Ozair et al. 2019), resulting in the family of transport depen-
dency. We illustrate the idea of transport dependency through a
toy example in Figure 1. The idea of transport dependency was
first proposed by Ozair et al. (2019) and was extended by differ-
ent authors with different names and slightly different formu-
lations, including Wasserstein correlation coefficients (WCC)
(Wiesel 2022), Wasserstein dependence coefficients (WDC)
(Mordant and Segers 2022), and transport correlations (TC)
(Nies et al. 2021). We summarize these methods in Table 1,
where the second column shows the explicit formulation of these
methods. To get a better understanding of these formulations,
one natural way is to consider two Gaussian variables such
that their joint distribution is a two-dimensional Gaussian with
correlation ρ. Under such a scenario, all the existing transport
dependency methods have closed-form expressions (when p =
2), which are listed in the third column in Table 1. In addition, we
illustrate these expressions in Figure 2 by comparing them with
the classical Pearson correlation and the distance correlation
(Székely et al. 2007). One can observe that all of these mea-
surements show a similar pattern with the Pearson correlation
and the distance correlation. Such an observation indicates the
existing transport dependency methods can effectively measure
the dependency between random variables.

Figure 1. Intuitively, the idea of transport dependency is to quantify the depen-
dence between two random variables by measuring the Wasserstein distance
between their joint distribution γ and the product of their marginal distribution
μ ⊗ ν.

Table 1. Different dependency measures based on Wasserstein distance.

Name Formulation 2-D Gaussian with p = 2 Complexity References

WCCp

( ∫
Wp

p (γx ,ν)μ(dx)∫ ‖x1−x2‖pμ(dx1)μ(dx2)

)1/p (
1 −

√
1 − ρ2

)1/2
n3 log(n) Wiesel (2022)

WDCp
Wp(γ ,μ⊗ν)

supγ̃∈�(μ,ν) Wp(γ̃ ,μ⊗ν)

(
2−

√
2+2

√
1−ρ2

2−√
2

)1/2

/ Mordant and Segers (2022)

TCp
Wp(γ ,μ⊗ν)

(
∫ ‖x1−x2‖pμ(dx1)μ(dx2))1/p

(
2 −

√
2 + 2

√
1 − ρ2

)1/2
n3 log(n) Nies et al. (2021)

SWCp
SWp(γ ,μ⊗ν)√

SWp(γX ,μ⊗μ)SWp(γY ,ν⊗ν)

(
π−∫ π

0
√

1+ρ sin(2θ)dθ

π−2
√

2

)1/2
n log(n) proposed method

In this table, γx is the distribution of Y condition on X = x, γX is the joint distribution of (X , X), γY is the joint distribution of (Y , Y), and ρ is the correlation of 2-D Gaussian.
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Figure 2. Comparison of different dependency measurements with p = 2 for two
Gaussian variables, whose joint distribution is a two-dimensional Gaussian with
correlation ρ. DC: distance correlation. Pearson: Pearson correlation. SWC: sliced-
Wasserstein correlation(proposed). TC: transport correlation. WCC: Wasserstein cor-
relation coefficients. WDC: Wasserstein dependence coefficient.

Despite the effectiveness, one limitation of the existing trans-
port dependency methods is the huge computational burden.
In particular, all of the three existing methods listed in Table 1
require calculating the Wasserstein distance, which is known
to have the computational cost of the order O(n3 log(n)) for
a sample of size n (Peyré and Cuturi 2019). In addition, the
WDC approach involves a nontrivial optimization problem in
its formulation, resulting in extra computational time. Although
in practice, Wasserstein distance could be replaced by Sinkhorn
divergence for faster computation (Genevay et al. 2019; Chizat
et al. 2020), it is not known whether the theoretical properties
of the transport dependency can still be preserved. Efficient and
effective transport dependency measurement is still meager.

3. Sliced-Wasserstein Dependency

In this article, we develop an efficient dependency measurement
called sliced-Wasserstein dependency. Let x ∈ Rdx and y ∈ Rdy

be two random vectors with the marginal distributions μ and
ν, respectively. Let γ be the joint distribution of x and y and
μ⊗ν be the product of their marginal distributions. The sliced-
Wasserstein dependency (SWD) is defined as

SWDp(x, y) := SWp(γ , μ ⊗ ν),

where SWp(γ , μ ⊗ ν) is the sliced p-Wasserstein distance
between γ and μ ⊗ ν. Let γμ and γν be the joint distribution
of (x, x) and (y, y), respectively. We also consider a normal-
ized version of the sliced-Wasserstein dependency, called sliced-
Wasserstein correlation (SWC), defined as

SWCp(x, y) := SWDp(x, y)√
SWDp(x, x)SWDp(y, y)

= SWp(γ , μ ⊗ ν)√
SWp(γμ, μ ⊗ μ)SWp(γν , ν ⊗ ν)

,

where we follow the convention 0/0 = 0.

We develop an empirical algorithm to estimate the sliced-
Wasserstein correlation in practice. Let Ifull = {(xi, yi)}2n

i=1 be
a sample generated from the joint distribution γ , where X =
{xi}2n

i=1 and Y = {yi}2n
i=1 are generated from the distribution μ

and ν, respectively. The key idea behind the proposed algorithm
is that one can construct a sample that follows the distribution
μ⊗ν using the observed sampleIfull (Dai et al. 2022). To achieve
the goal, we randomly split Ifull into two equal-size sub-samples,
denoted by I = {(xi, yi)}n

i=1 and Ĩ = {(x̃i, ỹi)}n
i=1. Further, we

introduce the following notations

Ixy = {(xi, yi)}n
i=1, Ĩxy = {(x̃i, yi)}n

i=1,

Ixx = {(xi, xi)}n
i=1, Ĩxx = {(x̃i, xi)}n

i=1,

Iyy = {(yi, yi)}n
i=1, Ĩyy = {(ỹi, yi)}n

i=1.

It is obvious that the sample Ĩxy = {(̃xi, yi)}n
i=1, Ĩxx =

{(̃xi, xi)}n
i=1, Ĩyy = {(̃yi, yi)}n

i=1 follows the distribution μ ⊗
ν, μ⊗μ, ν⊗ν, respectively. Let I{(xi ,yi)}n

i=1
be the discrete measure

that assigns mass 1/n to each observation (xi, yi). The empirical
sliced-Wasserstein dependency and sliced-Wasserstein correla-
tion thus can be calculated as

ŜWDp(x, y) := SWp(IIxy , IĨxy
),

ŜWCp(x, y) :=
SWp(IIxy , IĨxy

)√
SWp(IIxx , IĨxx

)SWp(IIyy , IĨyy
)

.

We summarize a few nice properties of sliced-Wasserstein
dependence and sliced-Wasserstein correlation as follows. The
technical proof is relegated to supplementary material.

Theorem 1. For two random vectors x ∈ Rdx and y ∈ Rdy , we
have

1. SWDp(x, y) ≥ 0, the equality holds if and only if x and y
are independent. In addition, SWDp(x, x) = 0 implies that
x = E(x) almost surely.

2. SWCp(x, y) ≥ 0, and equality holds if and only if x and y are
independent.

3. If y = a + xC, then SWCp(x, y) = 1 for all constant vectors
a in Rdx , and dx × dx orthonormal matrices C.

4. SWCp(a1 + bxC1, a2 + byC2) = SWCp(x, y) for all constant
vectors a1 in Rdx , a2 in Rdy , scalars b, dx × dx orthonormal
matrices C1, and dy × dy orthonormal matrices C2.

Theorem 2. If there exists a constant δ > 2 s.t. E‖x‖pδ

pδ < ∞ and
E‖y‖pδ

pδ < ∞, then almost surely

lim
n→∞ ŜWDp(x, y) = SWDp(x, y),

lim
n→∞ ŜWCp(x, y) = SWCp(x, y),

where ‖ · ‖p is the p-norm.

We provide the following theorem to show its relationship
with Pearson correlation in the bivariate normal distribution
case.
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Theorem 3. If X and Y are standard normal random variables
with cor(X, Y) = ρ, then

1. SWCp
p(X, Y) =

∫ 2π
0 |√1+ρ sin(2θ)−1|pdθ∫ 2π

0 |√1+sin(2θ)−1|pdθ
.

2. SWCp(X, Y) is a strictly monotonically increasing function
of |ρ|.

3. SWCp(X, Y) ≤ |ρ| and limρ→0
SWCp(X,Y)

|ρ| =( ∫ 2π
0 | sin(2θ)|pdθ∫ 2π

0 |2√
1+sin(2θ)−2|pdθ

)1/p
.

Remark 1. Specifically, if p = 2, we have

SWC2
2(X, Y) = π − ∫ π

0
√

1 + ρ sin(2θ)dθ

π − 2
√

2
,

lim
ρ→0

SWC2(X, Y)

|ρ| =
√

π

4
√

π − 2
√

2
≈ 0.79182.

The following theorem demonstrates the asymptotic proper-
ties of sliced-Wasserstein dependence when p = 1. We leave the
case p > 1 as future research. We may use this theorem to
conduct an independence test.

Theorem 4. Let x, y be two random vectors. Let x̃ be a random
vector that has the same distribution as x and is independent of x
and y. Denote z1 = (x, y), z2 = (x̃, y). Let F(θ , t) = Pr(z1θ

T ≤
t), G(θ , t) = Pr(z2θ

T ≤ t) and G′ is a centered Gaussian process
with a covariance function

cov
(
G′ (θ1, t1) , G′ (θ2, t2)

)
= cov

(
1{z1θ

T
1 ≤t1} − 1{z2θ

T
1 ≤t1}, 1{z1θ

T
2 ≤t2} − 1{z2θ

T
2 ≤t2}

)
.

where 1A is the indicator function of set A. Assume that there
exists a constant δ > 0 s.t. E‖x‖2+δ

2+δ < ∞ and E‖y‖2+δ
2+δ < ∞.

Then, we have
(i) if x and y are independent, then

√
nŜWD1

(
x, y

) d−→
∫ ∣∣G′∣∣ dtdσ(θ).

(ii) if x and y are dependent, then
√

nŜWD1
(
x, y

) a.e.−→ ∞.

4. Scalable Model-Free Feature Screening

We develop two model-free feature screening approaches based
on the proposed Sliced-Wasserstein Dependency (SWD) and
the Sliced-Wasserstein Correlation (SWC), respectively. These
two approaches are completely model-free as they allow for
arbitrary regression relationship of response onto the features,
regardless of whether it is linear or nonlinear. They also permit
univariate and multivariate responses, regardless of whether it is
continuous, discrete, or categorical. Due to the space limitation,
we mainly focus on the SWD-based approach in this section by
introducing the algorithm and its theoretical properties. Details
for the SWC-based approach are relegated to supplementary
material.

4.1. Feature Screening with Sliced-Wasserstein
Dependency

Let y = (Y1, . . . , Ydy)
ᵀ be a dy-dimensional response vector and

x = (X1, . . . , Xd)
ᵀ be a d-dimensional vector of features. We

focus on the scenario that dy is fixed and d � n. Naturally, we
may assume that only a small portion of the features are relevant
to the response. Let F(y|x) be the conditional distribution func-
tion of y given x. Following the notation in the literature (Li et al.
2012; Liu et al. 2020), without specifying any regression model
of y given x, we define the index set of the active features by

A = {k : F(y|x) functionally depends on Xk, k = 1, . . . , d}.

Such a setting abstracts a large number of sparse regres-
sion problems, including linear models and nonlinear mod-
els, among others. What’s more, the multivariate response and
grouped features are also allowed. Here, we denote the comple-
ment of A as Ac.

Suppose we observe a random sample of size 2n from (x, y)

and randomly split it into two halves. Without loss of generality,
we denote the two sub-samples as I = {(xi, yi)}n

i=1 and Ĩ =
{(x̃i, ỹi)}n

i=1. For k = 1, . . . , d, let Xik and X̃ik be the kth column
of xi and x̃i, respectively. Further, we introduce the following
notations

IXky = {(Xik, yi)}n
i=1, ĨXky = {(X̃ik, yi)}n

i=1.

Recall that Xk and y are independent if and only if the
sliced-Wasserstein dependency SWD1(Xk, y) equals zero. This
motivates us to screen out the features Xi such that the value
SWD1(Xi, y) is relatively small. To be specific, we compute the
empirical sliced-Wasserstein dependency between Xk and y as

ŜWD1(Xk, y) = SW1(IIXky , IĨXky
).

Then, we propose to estimate the active set A by

Â1 = {k : ŜWD1(Xk, y) ≥ c1n−c2 , 1 ≤ k ≤ d},

where c1 and c2 are prespecified threshold values, which will
be defined in Condition B.1 later. We name this approach
as sliced-Wasserstein dependency screening, summarized in
Algorithm 2.

Algorithm 2 Sliced-Wasserstein dependency screening
Input: {(xi, yi)}2n

i=1, c1, c2
for k = 1 : d do

Calculate ŜWD1(Xk, y) using Algorithm 1
end for
Â1 = {k : ŜWD1(Xk, y) ≥ c1n−c2 , 1 ≤ k ≤ d}
Output: Â1

4.2. Theoretical Results

We now study the theoretical properties of SWD screening.
In this section, we take the sliced-Wasserstein dependency in
Algorithm 1 as the true value. Under some regularity conditions,
we show this method enjoys the sure screening property (see
Theorem 5), which states that with probability approaching one,
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all active features are included in Â1. We also show that it has
the rank consistency property (see Theorem 6), which states
that almost surely the active features are ranked ahead of the
inactive ones as the sample size tends to infinity. We provide two
different conditions (see Conditions A.1 and A.2) which allow
for different orders of dimension d.

For α > 0, we define ‖ξ‖ψα := inf{C > 0 :
E[exp((|ξ |/C)α)] ≤ 2} for a real-valued random variable ξ .
The following regularity conditions help accomplish the proof,
which may not be the weakest ones.

Condition A.

(A1). Assume that it holds uniformly for d that
max1≤j≤d ‖Xj‖ψα < M and ‖‖y‖1‖ψα < M for some
α ∈ (0, 1] and M > 0.

(A2). Assume that it holds uniformly for d that
max1≤j≤d E|Xj|q < M and E‖y‖q

q < M for some
q ∈ (2, ∞) and M > 0.

Condition A.1 is weaker than Condition (C1) in Li et al.
(2012). It has weaker restrictions on the tail distribution. Indeed,
Condition (C1) in Li et al. (2012) clarifies that statements in
Condition A.1 is satisfied when α = 2, which can be eas-
ily induced when α ∈ (0, 1]. Condition A.1 follows imme-
diately when Xj and y are sub-Gaussian random variables or
subexponential random variables. Condition A.2 is even weaker
than Condition A.1 which only needs the existence of q-order
moment (q > 2). As a result, theoretical results based on
Condition A.2 allow for a lower order of d.

Condition B.

(B1). The minimum SWD1 of active features satisfies

min
k∈A

SWD1(Xk, y) ≥ 2c1n−c2

for some constants c1 > 0 and 0 ≤ c2 < 1/2.

(B2).

lim inf
d→∞

{
min
k∈A

SWD1(Xk, y) − max
k∈Ac

SWD1(Xk, y)

}
≥ 2c3

where c3 > 0 is a constant.

Condition B.1 is quite common in the marginal screening
literature, and it is the same as the Condition 3 in Fan and Lv
(2008) and the Condition(C2) in Li et al. (2012). This condition
guarantees that the dependency between the active features
and response cannot converge to zero too fast as n diverges.
Condition B.2 is also quite mild, and it is similar to Condition
3 in Cui et al. (2015). This condition imposes that there exists a
gap of signal between active and inactive features.

Theorem 5 gives sure screening property under two different
conditions. Condition A.1 allows for exponential order of d,
while less restrictive Condition A.2 allows for polynomial order
of d.

Theorem 5 (Sure screening).

(I) Assume Conditions A.1 and B.1 are satisfied. And if
there exists a constant ε > 0 such that log(d) =
o
(

nmin{1−2c2−2ε,α(1−c2−ε)}
log(1+n)

)
, then we have as n → ∞

Pr(A ⊂ Â1) → 1

(II) Assume Conditions A.2 and B.1 are satisfied. And
if there exists a constant ε > 0 such that d =
o(nq−1−qc2−qε), then we have as n → ∞

Pr(A ⊂ Â1) → 1

Theorem 6 provides a stronger theoretical result than sure
screening property. Though it requires a more restrictive con-
dition on the difference between active and inactive signals, it
tells us that, almost surely, the active features are ranked ahead
of the inactive ones as the sample size diverges.

Theorem 6 (Rank consistency).

(I) Assume Conditions A.1 and B.2 are satisfied. If
log d = o

(
nmin{1−2ε0,α(1−ε0)}) for some constant ε0 >

0, then we have almost surely

lim inf
n→∞

(
min
k∈A

ŜWD1(Xk, y) − max
k∈Ac

ŜWD1(Xk, y)

)
> 0

(II) Assume Conditions A.2 and B.2 are satisfied. If d =
o
(
nq−qε0−2) for some constant ε0 > 0, then we have

almost surely

lim inf
n→∞

(
min
k∈A

ŜWD1(Xk, y) − max
k∈Ac

ŜWD1(Xk, y)

)
> 0

5. Simulations

In this section, we show the empirical performance and the
computational time of the proposed SWC screening (SWC-SIS)
approach. We compare it with the existing sure independence
screening methods, includes sure independence screening (Fan
and Lv 2008, SIS), robust rank correlation screening (Li et al.
2012, RRCS), Spearman rank correlation screening (Yan et al.
2017, SRCS), distance correlation based screening (Li et al. 2012,
DC-SIS), bias-corrected distance correlation based screening
(Székely and Rizzo 2014, bcDC-SIS), martingale difference cor-
relation based screening (Shao and Zhang 2014, MDC-SIS), ball
correlation based screening (Pan et al. 2018, BCor-SIS), and
projection correlation based method (Liu et al. 2020; Xu et al.
2020, PC-SIS). We consider different data-generating models,
including linear models, nonlinear models, and multivariate
response models. The model settings are the same as those
in Liu et al. (2020). We replicated the experiment a hundred
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times for each model. For each replicate, we rank the features in
descending order w.r.t. each of the feature screening approaches.
The screening performance is measured by the following two
criteria:

• The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum
model size over 100 replicates.

• The proportion that all active features are selected for
a given model size di over 100 replicates where d1 =
[n/ log(n)], d2 = 2[n/ log(n)], d3 = 3[n/ log(n)].

Throughout this section, we set n = 100, d = 2000 for each
example, and we denote � = (σij)d×d with σij = 0.5|i−j|.
The numerical results of the second criterion are in Appendix,
supplementary materials. What’s more, feature screening results
for categorically distributed features and response are given in
Appendix.

5.1. Linear Models

Let Y be the response variable and Xj be the jth feature of x.
Consider the linear model

Y = X1 + X2 + X3 + X4 + X5 + ε,

where the features x and the random error ε are from the
following scenarios.

• Model 1.a: x ∼ N(0, �) and ε ∼ N(0, 1).
• Model 1.b: x ∼ N(0, �) and ε ∼ t1(0).
• Model 1.c: x ∼ t1(0, �) and ε ∼ N(0, 1).
• Model 1.d: x ∼ t1(0, �) and ε ∼ t1(0).

Here, t1(0) represents for the univariate t-distribution with zero
mean and degree-of-freedom one, and t1(0, �) represents mul-
tivariate t-distribution with zero mean, degree-of-freedom one,
and its variance-covariance matrix is �. As a result, in Models

1.b–1.d, at least one of the distributions w.r.t. x and ε is heavy-
tailed. We also consider the following two Poisson regression
models.

• Model 1.e (Continuous): Y = exp{2(X1 + X2 + X3 + X4 +
X5)} + ε, where x ∼ N(0, �) and ε ∼ N(0, 1).

• Model 1.f (Discrete): Y ∼ Possion(exp{2(X1 + X2 + X3 +
X4 + X5)}), where x ∼ N(0, �).

Model 1.e considers the continuous response, while the response
in Model 1.f is discrete.

Table 2 summarizes the quantiles of the minimum model size
which includes all five active features. We observe that SWC-
SIS, PC-SIS, BCor-SIS, SRCS and RRCS perform well under all
these linear models, while SIS, MDC-SIS, DC-SIS, and bcDC-
SIS suffer from a deteriorated performance at the presence of
heavy-tailed features and errors.

5.2. Nonlinear Models

Let Y be the response variable and Xj be the jth feature. Consider
the following four nonlinear models

• Model 2.a: Y = 5X1 + 2 sin(πX2/2) + 2X31{X3>0} +
2 exp{5X4} + ε.

• Model 2.b: Y = 3X1 + 3X3
2 + 3X−1

3 + 51{X4>0} + ε.
• Model 2.c: Y = 1 − 5(X2 + X3)

3 exp{−5(X1 + X3
4)} + ε.

• Model 2.d: Y = 1 − 5(X2 + X3)
−3 exp{1 + 10 sin(πX1/2) +

5X4} + ε.

where x ∼ N(0, �) and ε ∼ N(0, 1). Here, we use simple
additive structures in Models 2.a and 2.b, and use more challeng-
ing nonlinear structures in Models 2.c and 2.d. For each model
above, the true model size is 4.

The simulation results are summarized in Table 3. We observe
that most of the existing methods suffer from deteriorated

Table 2. The quantiles of minimum model size for linear models over 100 replicates.

Model 1.a Model 1.b Model 1.c

5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

SWC-SIS 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.3 54.2 5.0 5.0 5.0 6.0 13.2
PC-SIS 5.0 5.0 5.0 5.0 6.0 5.0 5.0 5.0 7.3 42.1 5.0 5.0 5.0 5.3 12.0
BCor-SIS 5.0 5.0 5.0 5.0 16.3 5.0 5.0 9.0 26.5 112.6 5.0 5.0 7.0 50.0 404.2
MDC-SIS 5.0 5.0 5.0 5.0 5.0 6.0 76.8 569.0 1847.8 1997.1 42.2 327.3 1120.5 1751.0 1972.2
bcDC-SIS 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.5 11.2 208.5 6.0 32.0 316.0 886.0 1428.6
DC-SIS 5.0 5.0 5.0 5.0 5.0 5.0 5.0 7.0 54.0 463.6 8.0 233.5 965.5 1509.3 1732.1
SRCS 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 7.0 33.8 5.0 5.0 5.0 7.0 24.1
RRCS 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.6 40.1 5.0 5.0 5.0 6.3 16.2
SIS 5.0 5.0 5.0 5.0 5.0 6.0 89.8 460.5 1508.8 1931.2 113.6 746.3 1514.0 1776.5 1945.4

Model 1.d Model 1.e Model 1.f

5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

SWC-SIS 5.0 5.0 6.0 11.3 38.1 5.0 5.0 5.0 5.0 6.0 5.0 5.0 5.0 5.0 7.3
PC-SIS 5.0 5.0 6.0 11.0 35.6 5.0 5.0 5.0 5.0 8.0 5.0 5.0 5.0 5.0 7.0
BCor-SIS 5.0 8.8 31.5 121.3 570.9 5.0 5.0 5.0 7.0 18.2 5.0 5.0 5.0 6.0 13.3
MDC-SIS 92.8 623.3 1369.5 1788.5 1967.1 13.4 110.8 329.5 770.0 1198.5 19.9 72.8 164.0 539.5 1244.3
bcDC-SIS 12.9 101.8 461.0 881.8 1374.2 10.8 37.0 108.0 673.5 1778.6 11.0 38.0 84.0 532.3 1602.3
DC-SIS 21.0 329.3 891.0 1431.5 1809.4 32.6 160.5 430.5 711.5 1431.3 41.0 124.3 294.0 558.3 1289.3
SRCS 5.0 5.0 5.0 20.0 69.0 5.0 5.0 5.0 5.0 8.0 5.0 5.0 5.0 5.0 6.0
RRCS 5.0 5.0 7.0 14.0 58.5 5.0 5.0 5.0 5.0 7.1 5.0 5.0 5.0 5.0 6.0
SIS 112.7 951.0 1451.5 1768.8 1921.0 73.9 282.0 539.5 1002.8 1561.5 75.5 181.3 387.5 746.0 1619.1

NOTE: The true model size is 5.
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Table 3. The quantiles of minimum model size for nonlinear models over 100 replicates.

Model 2.a Model 2.b

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

SWC-SIS 4.0 4.0 4.0 5.0 12.1 4.0 4.0 4.0 8.0 102.6
PC-SIS 4.0 4.0 4.0 5.0 9.2 4.0 4.0 4.0 7.0 70.8
BCor-SIS 4.0 4.0 6.0 13.0 80.0 4.0 4.0 6.0 22.5 227.3
MDC-SIS 219.0 727.5 1225.5 1570.0 1593.3 5.0 71.3 985.5 1796.5 1993.1
bcDC-SIS 203.4 944.3 1330.5 1720.8 1945.3 4.0 4.0 5.0 16.0 92.3
DC-SIS 189.6 696.8 1229.5 1588.8 1897.5 4.0 4.8 9.0 78.8 443.2
SRCS 4.0 4.0 5.0 6.0 27.4 4.0 4.0 5.0 9.0 73.2
RRCS 4.0 4.0 4.0 5.0 18.1 4.0 4.0 5.0 9.3 87.2
SIS 218.5 823.8 1273.5 1764.5 1961.3 9.0 117.0 821.0 1569.3 1935.8

Model 2.c Model 2.d

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

SWC-SIS 4.0 4.0 4.0 5.3 17.1 4.0 4.0 4.0 7.0 21.3
PC-SIS 4.0 4.0 4.0 6.0 16.1 4.0 4.0 7.0 24.0 90.1
BCor-SIS 4.0 4.0 4.0 4.0 6.1 4.0 5.0 7.0 18.0 73.7
MDC-SIS 193.1 1029.0 1535.5 1913.3 2000.0 425.8 1050.8 1574.0 1826.5 1998.2
bcDC-SIS 229.4 1000.5 1217.5 1777.3 1917.7 568.0 1040.8 1447.5 1777.5 1959.3
DC-SIS 323.3 940.0 1373.0 1741.5 1928.7 524.6 1163.3 1532.5 1802.8 1966.6
SRCS 4.0 7.8 24.0 155.4 638.2 4.0 20.0 59.0 341.6 1085.0
RRCS 4.0 7.0 24.5 137.3 634.0 5.0 21.0 69.0 372.8 1205.7
SIS 296.5 934.5 1394.5 1732.3 1921.6 619.2 1237.5 1620.0 1832.3 1950.4

NOTE: The true model size is 4.

Table 4. The quantiles of minimum model size for multivariate response models over 100 replicates.

Model 3.a Model 3.b

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

SWC-SIS 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 6.1
PC-SIS 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 8.3 53.1
BCor-SIS 4.0 4.0 4.0 4.0 4.0 4.0 4.0 6.0 16.5 68.9
MDC-SIS 4.0 4.0 4.0 4.0 4.0 45.9 382.5 814.5 1212.0 1851.7
bcDC-SIS 4.0 4.0 4.0 4.0 4.0 27.6 437.8 1019.5 1412.3 1833.9
DC-SIS 4.0 4.0 4.0 4.0 4.0 172.0 457.0 830.0 1213.3 1782.5

Model 3.c Model 3.d

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

SWC-SIS 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.0
PC-SIS 4.0 4.0 4.0 4.0 4.1 4.0 4.0 5.0 7.0 32.0
BCor-SIS 4.0 4.0 4.0 4.0 30.4 4.0 7.0 18.0 39.3 211.5
MDC-SIS 44.9 275.8 956.5 1436.3 1770.4 770.4 1201.5 1503.5 1795.8 1980.3
bcDC-SIS 10.0 133.3 796.5 1579.0 1883.8 236.2 1201.5 1582.0 1862.0 1978.2
DC-SIS 79.4 269.5 545.0 1016.5 1495.8 356.9 1075.5 1501.5 1701.5 1939.5

NOTE: The true model size is 4.

performance when there exists challenging nonlinear structures.
We also observe that the proposed SWC-SIS method performs
reasonably well under all nonlinear models.

5.3. Multivariate Response Models

We study the performance of SWC-SIS for multivariate response
models. SIS, SRCS, and RRCS are not applicable to multivariate
response problems and thus are omitted here. y = (Y1, Y2) are
generated from a bivariate normal distribution with conditional
mean μy|x = (μ1(x), μ2(x)) and covariance matrix �y|x =
(σij)2×2, where σ11 = σ22 = 1 and σ12 = σ21 = σ(x). We
set β = (24, 0d−4) and generate μ1(x), μ2(x) and σ(x) from
four different models. The first two are borrowed from Li et al.
(2012), Liu et al. (2020), and the last two are more complicated.

• Model 3.a: μ1(x) = X1 + X3, μ2(x) = X4 and σ(x) =
sin(xβT).

• Model 3.b: μ1(x) = X31{X3>0} + exp{1 + 10 sin(πX1/2) +
5X4}, μ2(x) = X−2

2 and σ(x) = (exp{xβT} −
1)/(exp{xβT} + 1).

• Model 3.c: μ1(x) = exp{2(X1 + X2)}, μ2(x) = X3 + X4 and
σ(x) = sin(xβT).

• Model 3.d: μ1(x) = 2 sin(πX1/2) + X3 + exp{1 +
X4}, μ2(x) = X−2

1 + X2 and
σ(x) = (exp{xβT} − 1)/(exp{xβT} + 1).

In these four models, the union of the active sets of
μ1(x), μ2(x), and σ1(x) contains the first four covariates in the
features, and thus the model size is four. The results in Table 4
shows the proposed SWC-SIS method performs reasonably well
compared to other methods.

5.4. Computational Time

We compare the CPU time for the proposed SWC method
and the competitors. We calculate the dependency between
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Figure 3. The sample size n versus the CPU time of different dependency measurements for measuring the dependency between two univariate Gaussian variables (left)
and two 5d multivariate Gaussian variables.

Table 5. Mean errors of prediction error and time consumption (seconds) based on different feature selection methods for two training sample sizes over 100 replications.

SWC-SIS BCor-SIS MDC-SIS bcDC-SIS DC-SIS

30% Mean error 0.157(0.047) 0.157(0.046) 0.159(0.045) 0.160(0.045) 0.159(0.045)
Mean screening time(sec) 2.165 2350.210 456.829 9.656 9.651

90% Mean error 0.048(0.006) * * 0.046(0.005) 0.046(0.005)
Mean screening time(sec) 7.535 * * 124.640 124.966

two univariate Gaussian random vectors and two multivariate
Gaussian random vectors, respectively, with respect to each of
the dependency measurements. The average CPU time w.r.t. a
hundred replicates are shown in Figure 3, where the left and
right panels represent the univariate and multivariate settings,
respectively. We first observe that MDC, BCor, and PC method
require relatively long CPU time in both settings since the com-
putational cost of these three methods are at least of the order
O(n2). We then observe that DC and bcDC require the shortest
CPU time under the univariate setting, while their CPU time
significantly increases in the multivariate setting. This obser-
vation is expected since the computational cost for these two
methods are at the order of O(n2) in general cases, while they
admit efficient algorithm that of the order O(n log(n)) in the
univariate setting, see Huo and Székely (2016) for details. Finally,
we observe that the CPU time for the proposed SWC method
grows approximately linearly w.r.t. n in both settings. Such an
observation indicates that SWC is efficient in evaluating the
dependency between large-scale random vectors. In addition,
the proposed variable screening approach SWC-SIS is efficient
for picking information features, especially when the response
is multivariate and the sample size n is considerable.

6. Real Data Examples

We consider a multi-response dataset that was first proposed
in Spyromitros-Xioufis et al. (2016). This dataset concerns the
prediction of river network flows for 48 hr in the future at
specific locations. It contains data from hourly flow observations
for eight sites in the Mississippi River network in the United
States and was obtained from the US National Weather Service.

It contains over one year of hourly observations collected from
September 2011 to September 2012. Each row includes 576
attribute variables observed from eight sites. Target variables
are river network flows for 48 hr in the future of eight sites.
The domain is a natural candidate for multi-target regression
because there exist clear physical relationships between read-
ings in the contiguous river network (Spyromitros-Xioufis et al.
2016).

After removing missing values, this dataset has sample size
n = 7679, number of covariates d = 584, and number
of response dy = 8, with some variables being continuous
and some being discrete. We randomly select 30% and 90% of
data as the training set, treat the rest as the testing set, and
keep [ntrain/ log ntrain] = 264 and [ntrain/(3 log ntrain)] = 260
variables respectively in the screening procedures. We use the
retained variables to fit a multi-target regression using R package
glmnet. Finally, we compare mean errors of prediction error
based on different feature selection methods over 100 replica-
tions. PC-SIS requires huge computational costs, and thus we
omit their results here. We summarize the results in Table 5.
Both BCor-SIS and MDC-SIS approaches require several hours
to calculate the results when using 90% data, and thus their
results are omitted. We observe that the proposed SWC-SIS
method achieves comparable prediction error with the competi-
tors, requiring significantly less CPU time.

We provide more real-world datasets in supplementary mate-
rial, including cardiomyopathy microarray data (Segal et al.
2003; Hall and Miller 2009; Li et al. 2012) and yeast cell-cycle
data (Chun and Keleş 2010; Chen and Huang 2012; Kong et al.
2017). All the results show that SWC-SIS is effective and efficient
for screening informative features for large-scale datasets.
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7. Conclusion

We proposed a novel measurement called sliced-Wasserstein
dependency to quantify the dependence between two ran-
dom variables. We then developed a model-free feature screen-
ing algorithm by screening out the features whose sliced-
Wasserstein dependency w.r.t. the response is relatively small.
Theoretically, we showed that our method enjoys sure screening
and rank consistency properties under mild regularity condi-
tions. The proposed algorithm is highly efficient for screening
informative features in large-scale datasets. The superior perfor-
mance of our method over mainstream competitors was justified
by various numerical experiments.

Supplementary Materials

Appendix: contains the complete proofs of the theoretical
results; and additional experiments including two real data
examples, simulation results based on the second criterion,
and feature screening results for categorically distributed fea-
tures and response. (appendix.pdf, a pdf file)

Code: contains R code that implements the proposed method
and reproduces the numerical results. A readme file is
included describing the contents. (code.zip, a zip file)
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